暴力
import java.util.*;import java.io.*;public class Main { public static void main(String[] args) { Scanner cin = new Scanner (new BufferedInputStream (System.in)); int a = cin.nextInt (); int b = cin.nextInt (); int c = cin.nextInt (); for (int i=0; a*i<=c; ++i) { int d = c - a * i; if (d % b == 0) { System.out.println ("Yes"); return ; } } System.out.println ("No"); }}
数学
题意:问n!的后缀0的个数为m个的n的范围.
分析:出现0的一定是2*5产生的,而2的数字有很多,所以找到最小的数字之前5的总个数为m的.二分来找.
#includeint number(int x) { int ret = 0; while (x) { x /= 5; ret += x; } return ret;}int main() { int m; scanf ("%d", &m); int left = 1, right = (int) 1e9; while (left < right) { int mid = left + right >> 1; if (number (mid) < m) left = mid + 1; else right = mid; } std::vector ans; for (;;) { if (number (left) == m) ans.push_back (left); else break; left++; } int sz = ans.size (); printf ("%d\n", sz); for (int i=0; i 0) putchar (' '); printf ("%d", ans[i]); } puts (""); return 0;}
Trie + DP
题意:有一句话被变成全小写并且删掉空格并且翻转单词,然后给出可能的单词.问原来可能的这句话.
分析:首先把单词插入到字典树上,这里为了节约内存把所有单词并在一起.结点保存了该单词在单词串的位置以便输出.然后文本串倒过来在字典树上DP搜索,最后正的输出,那么可以找到可行的一句话.
#includeconst int N = 1e4 + 5;const int M = 1e6 + 1e5;const int NODE = M;char text[N], words[M];int ch[NODE][26], val[NODE], pos[NODE];int n, m, sz;int nex[N], wl[N];int idx(char c) { return tolower (c) - 'a';}void trie_init() { memset (ch[0], 0, sizeof (ch[0])); sz = 1;}void trie_insert(char *str, int end, int id, int p) { int u = 0; for (int c, i=0; i 0; --i) { if (nex[i] == -1) continue; int u = 0; for (int c, j=i-1; j>=0; --j) { c = idx (text[j]); if (!ch[u][c]) break; u = ch[u][c]; if (val[u] > 0) { wl[j] = pos[val[u]]; nex[j] = i; } } }}int main() { scanf ("%d", &n); scanf ("%s", text); scanf ("%d", &m); trie_init (); for (int L=0, i=1; i<=m; ++i) { scanf ("%s", words + L); int len = strlen (words + L); trie_insert (words + L, len, i, L); L += len + 1; } trie_query (); int now = 0; while (now < n) { if (now > 0) putchar (' '); printf ("%s", words + wl[now]); now = nex[now]; } puts (""); return 0;}
DFS + 二分
题意:在n个数找出一组数字满足fn = fn-1 + fn-2, 问最大长度.
分析:n的范围小,可以考虑n^2枚举两个起点,因为要考虑到个数的问题,这里我选择一种方便的写法:首先不考虑个数,只预处理两个数能否到下一个数字.然后考虑个数,类似DFS的vis功能,深搜时-1,回溯时+1
#includeconst int N = 1e3 + 5;const int MOD = 1e9 + 7;int a[N], A[N];int nex[N][N];int cnt[N];int ans;void DFS(int i, int j, int step) { if (step > ans) ans = step; int k = nex[i][j]; if (k == -1) return ; else if (cnt[k] > 0) { --cnt[k]; DFS (j, k, step + 1); ++cnt[k]; }}int main() { int n; scanf ("%d", &n); for (int i=0; i = m || A[i] + A[j] != A[k]) nex[i][j] = -1; else nex[i][j] = k; } } ans = 2; for (int i=0; i
二分查找 + RMQ + 组合数学
题意:对于每一个li = i,找到一个ri,使得最大.从n个结果中选择k个,最小值的期望.
分析:第一个问题,考虑前缀max (vk)是递增的,考虑前缀min(ck)是递减的,两者取min那么是单峰函数,二分查找.第二个问题,首先对结果排序,假设最小值为ans[i],那么选中它当最小值的概率是C(n-i, k-1) / C (n, k).p * ans[i]求和就是期望.发现公式可以递推.
#includeconst int N = 1e6 + 5;int mx[N][21], mn[N][21];int best[N];int n, k;void build_max() { for (int j=1; (1< <=n; ++j) { for (int i=1; i+(1< <=n; ++i) { mx[i][j] = std::max (mx[i][j-1], mx[i+(1<<(j-1))][j-1]); } }}int query_max(int l, int r) { int k = 0; while (1<<(k+1) <= r-l+1) ++k; return std::max (mx[l][k], mx[r-(1< r || l < 1 || r > n) return 0; return std::min (100 * query_max (l, r), query_min (l, r));}int main() { scanf ("%d%d", &n, &k); for (int i=1; i<=n; ++i) { scanf ("%d", &mx[i][0]); } build_max (); for (int i=1; i<=n; ++i) { scanf ("%d", &mn[i][0]); } build_min (); for (int i=1; i<=n; ++i) { int low = i, high = n; while (low + 1 < high) { int mid = low + high >> 1; int v1 = 100 * query_max (i, mid); int v2 = query_min (i, mid); if (v1 < v2) low = mid; else high = mid; } best[i-1] = std::max (p (i, low), p (i, high)); } std::sort (best, best+n); double prob = 1.0 * k / n; double ans = prob * best[0]; for (int i=1; i<=n-k; ++i) { prob = prob * (n - i - k + 1) / (n - i); ans += prob * best[i]; } printf ("%.12f\n", ans); return 0;}
树形DP
题意:树上选择两条不相交的路径,且两条路径权值和最大.
分析:因为权值>0, 所以起点或终点一定在叶子结点上,第一次DFS,得到best[u]:u结点的子树下得到最大权值和(一条),以及down[u]:从结点u出发到叶子节点选择一条路的最大权值和.第二次DFS扫描每一个结点,从儿子中选择一个,它子树best[v1]作为一条路径,还有一条从前缀i以及后缀i+1中选择,更新最大值就是答案.
#includetypedef long long ll;const int N = 1e5 + 5;std::vector edge[N];int a[N];ll best[N], down[N];ll ans;int n;void DFS(int u, int fa) { std::vector downs; for (auto v: edge[u]) { if (v == fa) continue; DFS (v, u); best[u] = std::max (best[u], best[v]); downs.push_back (down[v]); } ll mx1 = 0, mx2 = 0; for (auto d: downs) { if (d > mx1) { mx2 = mx1; mx1 = d; } else if (d > mx2) { mx2 = d; } } best[u] = std::max (best[u], mx1 + mx2 + a[u]); down[u] = mx1 + a[u]; ans = std::max (ans, best[u]);}void DFS2(int u, int fa, ll up) { up += a[u]; std::vector children; for (auto v: edge[u]) { if (v == fa) continue; children.push_back (v); } int sz = children.size (); if (sz == 0) return ; std::vector prebest (sz + 1), sufbest (sz + 1); //前缀(1~i-1)最优的一条路径 prebest[0] = 0; for (int i=0; i =0; --i) { //后缀(i+1~sz-1)最优的一条路径 sufbest[i] = std::max (sufbest[i+1], best[children[i]]); } std::vector predown (sz + 1), predown2 (sz + 1); //前缀两条到叶子节点最优的路径 predown[0] = predown2[0] = 0; for (int i=0; i predown[i+1]) { predown2[i+1] = predown[i+1]; predown[i+1] = x; } else if (x > predown2[i+1]) { predown2[i+1] = x; } } std::vector sufdown (sz + 1), sufdown2 (sz + 1); //后缀两条到叶子节点最优的路径 sufdown[sz] = sufdown2[sz] = 0; for (int i=sz-1; i>=0; --i) { sufdown[i] = sufdown[i+1]; sufdown2[i] = sufdown2[i+1]; ll x = down[children[i]]; if (x > sufdown[i]) { sufdown2[i] = sufdown[i]; sufdown[i] = x; } else if (x > sufdown2[i]) { sufdown2[i] = x; } } for (int i=0; i
DFS序 + 线段树 + bitset
题意:两种操作; 1.v的子树的所有结点权值+x 2. 询问v子树%m后是素数的个数
分析:1操作想到线段树的成段更新,树变成线段用DFS序,每个结点有它'统治"的范围(子树). 然而后者统计用普通数组很难实现.用到了bitset这个容器,里面可以表示m位的01,本题表示一个结点子树所拥有的数值(%m),最后只要&primes就是素数个数.那么如何实现+x呢,因为每一位表示数值,往前一位表示+1,那么<<x, 还有可能移位超出去了,还要| >>(m - x).
#include#define lson l, mid, o << 1#define rson mid + 1, r, o << 1 | 1const int N = 1e5 + 5;std::bitset<1000> tree[N<<2], primes, ret;std::vector edge[N];int lazy[N<<2];int a[N], id[N], fl[N], fr[N];int n, m, q, tot;void add(int &x, int y) { x += y; if (x >= m) x %= m;}void push_up(int o) { tree[o] = tree[o<<1] | tree[o<<1|1];}void rotate(int o, int x) { add (lazy[o], x); tree[o] = (tree[o] << x) | (tree[o] >> (m - x));}void push_down(int o) { if (lazy[o] != 0) { rotate (o << 1, lazy[o]); rotate (o << 1 | 1, lazy[o]); lazy[o] = 0; }}void build(int l, int r, int o) { if (l == r) { tree[o].set (a[id[l]]%m); return ; } int mid = l + r >> 1; build (lson); build (rson); push_up (o);}void updata(int ql, int qr, int x, int l, int r, int o) { if (ql <= l && r <= qr) { rotate (o, x); return ; } push_down (o); int mid = l + r >> 1; if (ql <= mid) updata (ql, qr, x, lson); if (qr > mid) updata (ql, qr, x, rson); push_up (o);}void query(int ql, int qr, int l, int r, int o) { if (ql <= l && r <= qr) { ret |= tree[o]; return ; } push_down (o); int mid = l + r >> 1; if (ql <= mid) query (ql, qr, lson); if (qr > mid) query (ql, qr, rson);}void DFS(int u, int fa) { id[fl[u]=++tot] = u; for (auto v: edge[u]) { if (v != fa) DFS (v, u); } fr[u] = tot;}bool is_prime(int x) { if (x == 2 || x == 3) return true; if (x % 6 != 1 && x % 6 != 5) return false; for (int i=5; i*i<=x; i+=6) { if (x % i == 0 || x % (i + 2) == 0) return false; } return true;}int main() { scanf ("%d%d", &n, &m); for (int i=1; i<=n; ++i) { scanf ("%d", a+i); } for (int u, v, i=0; i
暴力 || 莫队+线段树
题意:q次询问,每次对l和r的范围内的数字去重,然后升序排序,计算fib[j] * a[j]的和.
分析:目前只会暴力的思路: 先排序, 然后每一个数原先对应的询问区间内累加,O(nq)复杂度险过
#includeconst int N = 3e4 + 5;std::pair a[N];int fib[N];int ql[N], qr[N], last[N], step[N];int ans[N];int main() { int n, m; scanf ("%d%d", &n, &m); for (int i=1; i<=n; ++i) { scanf ("%d", &a[i].first); a[i].second = i; } std::sort (a+1, a+1+n); fib[0] = 1; fib[1] = 1; for (int i=2; i<=n; ++i) fib[i] = (fib[i-2] + fib[i-1]) % m; int q; scanf ("%d", &q); for (int i=0; i qr[j]) continue; if (a[i].first == last[j]) continue; ans[j] = (ans[j] + v * fib[step[j]++]) % m; last[j] = a[i].first; } } for (int i=0; i